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Abstract. In this paper the stochastic dynamics of adaptive evolutionary search, as performed by the
optimization algorithm Population–Based Incremental Learning, is analyzed with physicists’ methods for
stochastic processes. The master equation of the process is approximated by van Kampen’s small fluctua-
tions assumption. It results in an elegant formalism which allows for an understanding of the macroscopic
behaviour of the algorithm together with its fluctuations. We consider the search process to be adaptive
since the algorithm iteratively reduces its mutation rate while approaching an optimum. On the one hand,
it is this feature which allows the algorithm to quickly converge towards an optimum. On the other hand
it results in the possibility to get trapped by a local optimum only. To arrive at a detailed understanding
we discuss the influence of fluctuations, as caused by mutation, on this behaviour. We study the algorithm
for rather small sytem sizes in order to gain an intuitive understanding of the algorithm’s performance.

PACS. 89.20.Ff Computer science and technology – 87.23.Kg Dynamics of evolution – 05.10.Gg Stochastic
analysis methods (Fokker-Planck, Langevin, etc.)

1 Introduction

Population-Based Incremental Learning (PBIL) [1] was
introduced as both, a general model for evolutionary op-
timization techniques, like the Genetic Algorithm [2], as
well as an alternative to them, since it results in an elegant
and easy to implement procedure for binary coded search
problems. It is due to this fact that in recent years PBIL
successfully has been applied to real world optimization
tasks [3,4]. On the other hand theoretical results describ-
ing the dynamics of the algorithm are rare.

This work is thought of being a step towards an un-
derstanding of the algorithm, by application of physi-
cists’ methods for the analysis of stochastics processes.
The analysis is done by use of earlier developed methods,
namely van Kampen’s linear noise approximation of the
master equation of a stochastic process [5]. The formal-
ism was previously utilized for the analysis of online and
reinforcement learning schemes in neural networks, such
as perceptrons or self-organizing maps, like in [6–9] and
references therein.

The deepest understanding of PBIL, so far, can be
found in [10], where convergence for a linear search prob-
lem has been proved and the behaviour for a non-linear
function has been illustrated. The analysis given there is
based on studies of the average of PBIL’s iteration equa-
tion solely. The study given in the work here confirms
their findings and considerably extends the older analysis
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in several directions. Firstly, by considering fluctuations
within van Kampen’s approximation, one can show that
PBIL’s behavior is only correctly described by the average
of its system variable locally and when fluctuations behave
sufficiently harmless (to be defined later). Secondly, the
dynamics of the average behavior, together with the dy-
namics of the superimposed fluctuations is calculated ex-
actly. Finally, the influence of PBIL’s parameters, namely
learning rate and population size, on the dynamics is dis-
cussed.

2 Population-based incremental learning

Let us consider binary search spaces {0, 1}L, where L is
the dimension of the search space and at the same time
the length of the genomes or individuals. Furthermore,
let us consider individuals x ∈ {0, 1}L and populations
X = {x1,x2, ... ,xN}, where N is the number of individ-
uals within a population. The individuals are the corners
of the L-dimensional hypercube and represent potential
solutions of the search problem. To each individual x a
fitness or evaluation value f(x) ∈ < is deterministically as-
signed. We consider minimization problems, consequently
the goal of search is to find the set of solutions with min-
imal evaluation value.

PBIL is based on the idea that the individuals of a
population may be replaced by parameters determining
their probability density. These parameters are stored in a
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probability vector p, specifying the probabilities for each
site to be equal 1. From this probability vector in each
iteration step, or generation, a population of individuals
is drawn. The population then is evaluated and the best
individual is selected (Winner–takes–all–selection). In a
final step, the probability vector is shifted with a learning
rate η into the direction of the selected individual.

Let us explain the algorithm discussed here: Starting
from some initial probability vector p0 ∈ ]0, 1[L, the al-
gorithm is executed for each iteration step or generation
i = 0, 1, ... , I as follows:

1. Sample a population Xi of N individuals from pi for
each site independently

2. Choose the individual bi ∈ Xi with minimal evalua-
tion value from the population

3. Update pi in direction of the best individual bi
4. This yields the new probability vector pi+1. Go to

Step 1

As update rule, a moving average with exponential forget-
ting in generation i is used. According to this rule, p is
shifted with a learning rate η ∈ ]0, 1[ towards the selected
individual b

∆pi = pi+1 − pi = η(bi − pi) . (1)

The process caused by the update rule is stochastic and
Markovian, since the system state pi and the population
Xi are random variables which only depend on the pre-
ceding system state. PBIL’s search takes place inside the
binary hypercube. Because of the particular form of the
update rule the process is restricted to the interval ]0, 1[L,
thus has natural boundary conditions. The selection of the
best individual bi depends on the current system state pi,
the size of the population N and the particular evaluation
values of the current population Xi.

The main difference between PBIL and the Genetic
Algorithm is the representation of the population. Ad-
ditionally, PBIL does not explicitly mutate individuals.
However, caused by the generation or sampling process of
the individuals from the probability vector, mutation is
implicitly realized, since a variety of different individuals
might be generated from a single probability vector. Fur-
thermore, since the probability vector eventually will con-
verge towards one of the corners of the cube, the variety
of the population will decrease. This might be interpreted
as an adaptive mutation rate (or adaptive cooling), which
reduces itself while approaching an optimum.

For a first illustration on how PBIL’s search takes
place, three randomly chosen searches starting at
{0.5, 0.5} are shown for N = 2, η = 0.05 and specific prob-
lems of sizes L = 2 as given by [10]. In Figure 1 search for
a linear search problem of the form

f(x) = x1 + x2 , (2)

is shown. The search space as defined by the evaluation
function has one global optimum, given by the individual
x = {0, 0}. The figure illustrates how all three searches
converge towards the global optimum, however with a con-
siderable amount of fluctuations. In Figure 2 search for a
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Fig. 1. Three randomly chosen searches for the 2–dimensional
linear search problem with a unique optimum, the corner
{0, 0}, are shown. All searches converge towards the global op-
timum, however with a considerable amount of variation.
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Fig. 2. Three randomly chosen searches for the 2–dimensional
nonlinear search problem with a global optimum, the corner
{0, 0}, and a local optimum, the corner {1, 1}, are shown. Two
searches converge towards the global optimum, while a sin-
gle one converges towards the local one. Again a considerable
amount of variation is observed.

nonlinear search problem of the form

f(x) = 3x1 + 2x2 − 4x1x2 , (3)

is shown. The search problem has one global optimimum,
given by individual x = {0, 0}, and one local one, as given
by individual x = {1, 1}. The figure illustrates how two
searches converge towards the global optimum and one
ends up in the local one. It is the goal of this work to
describe the tendencies and fluctuations as illustrated in
the simulations.
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3 The Fokker-Planck equation

Within the analysis the focus is on the probability density
wi(p) of finding the system in state p at generation i. The
dynamics of this probability density formally is written

wi+1(p) =
∫
t(p|p′)wi(p′)dp′ , (4)

with t(p|p′) being the transition probability to generate
p from p′ in one generation. It is given by

t(p|p′) =
∑
{b}

φ(b|p′)δ(p− p′ − η(b− p)), (5)

where δ(...) is the Dirac–Delta function, the sum runs over
all possible events {b} leading to an individual to be gen-
erated and selected for the update (Eq. (1)) as a best one
b and φ(b|p′) is the probability that a random vector b
is chosen for the update given the system state p′.

In [11] it has been shown that such a discrete time
Markov process can be converted into a continuous one
by considering the time intervals ∆t between successive
discrete iteration steps to be randomly sampled from a
probability density of the form ρ(∆t) = τ−1e−∆t/τ . Since
the probability

π(i, t) =
1
i!

( t
τ

)i
e−

t
τ , (6)

that after time t there have been i iteration steps, then
obeys a Poisson process, one can define the probability
W (p, t) that the system is in state p at some continuous
time t as

W (p, t) =
∞∑
i=0

π(i, t)wi(p). (7)

Differentiation of the equation results in a continuous time
Master equation of the form

∂W (p, t)
∂t

=
∫ (

T (p|p′)W (p′, t)−

T (p′|p)W (p, t)
)

dp′, (8)

with T (p|p′) = t(p|p′)/τ being the transition probability
per a unit time.

In the next step a small fluctuations expansion in the
learning rate η is performed according to van Kampen’s
system size expansion [5]. It assumes that for small learn-
ing rates, the stochastic process can be approximated by
a deterministic trajectory 〈p〉t superimposed by fluctua-
tions ζ(t). Formally, it can be written in the form

p(t) = 〈p〉t +
√
ηζ(t), (9)

where the average, as denoted by 〈...〉t, is taken over all
possible states at time t.

Introducing equation (9) into equation (8) and per-
forming the so called Kramers–Moyal expansion, a series

expansion of the Master equation for small learning rates
η, one finds, when truncating the series after second order
in
√
η, for the time evolution of the probability density

W (...) = W (〈p〉t +
√
ηζ(t), t) the Fokker-Planck equation

τ

η

∂W (...)
∂t

= −
∑
k

Akl(〈p(t)〉)∂ζlW (...)
∂ζk

+
1
2

∑
kl

Bkl(〈p(t)〉)∂
2W (...)
∂ζk ∂ζl

, (10)

which solution is given by a multivariate Gaussian and its
moments are determined by

Akl(〈p(t)〉) =
∂

∂〈pl〉
∑
{b}

(bk − pk)φ(b|p) (11)

and

Bkl(〈p(t)〉) =
∑
{b}

(bk − pk)(bl − pl)φ(b|p) . (12)

To make the assumption hold, fluctuations are not allowed
to increase in time to the order of magnitude of the deter-
ministic or macroscopic dynamics

τ

η

d〈p〉
dt

=
∑
{b}

(b− p)φ(b|p) . (13)

It becomes clear from equation (10) that the condition
that ensures the self-consistency of the small fluctuations
assumption requires that the eigenvalues of the matrix A
have a negative real part for all values of 〈p〉.

The dynamics of the average and covariance of the
fluctuations, namely fk(t) = 〈ζk〉t and Fkl(t) = 〈ζkζl〉t −
〈ζk〉t〈ζl〉t, can be derived from the Fokker–Planck equation
also. They are given by

t

τ

df(t)
dt

= A(〈p(t)〉) f(t) (14)

and

t

τ

dF(t)
dt

= A(〈p(t)〉) F(t) + F(t) A(〈p(t)〉)T

+B(〈p(t)〉). (15)

4 Analysis

4.1 Selection

For the analysis the probability of each individual to be
generated and selected from the population as the best
one b, as it appears in equation (5), has to be specified.
For Winner–takes–all selection it is given by [10]

φ(b|p) = υ(b)
N−1∑
n=0

υ(f(x) > f(b))n

× υ(f(x) ≥ f(b))N−1−n, (16)
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where the sum runs over the individuals of the population.
The term υ(b) reflects the probability of the best individ-
ual to be generated from the probability vector, whereas
the sum over the remaining probabilities reflects the se-
lection process where the best individual, the individual
with smallest evaluation value f(b) within the population,
is selected.

Fortunately the single probabilities appearing in equa-
tion (16) can be expressed in terms of the components of
p. They are given by

υ(b) =
L∏
l=1

pbll (1− p1−bl
l ), (17)

υ(f(x) > f(b)) =
∑

x∈{0,1}L,f(x)>f(b)

υ(x) (18)

and

υ(f(x) ≥ f(b)) =
∑

x∈{0,1}L,f(x)≥f(b)

υ(x). (19)

Equation (16) reflects the Winner–takes–all–selection pro-
cess where the best individual is found in trial n + 1, af-
ter the first n have not been any better then the best one
found, and the following N−1−n individuals have at least
been as good, but not better then it. From equation (16)
it becomes clear that it is selection which will introduce a
coupling between the components of the search space into
the dynamics of search.

4.2 Macroscopic dynamics

We begin the analysis by calculating the deterministic
function (Eq. (13)) for the linear search problem (Eq. (2)).
For the moment we fix population size at N = 2 and fo-
cus on the 2–dimensional examples. Let us write down the
probabilities from equation (16) for this case first. They
are given by

φ({0, 0}|p) = (1− p1)(1− p2)
× (1 + p1 + p2 − p1p2), (20)

φ({0, 1}|p) = (1− p1)p2(p1 + p2), (21)

φ({1, 0}|p) = p1(1− p2)(p1 + p2) (22)

and

φ({1, 1}|p) = (p1p2)2. (23)

The deterministic equation for the linear search problem
then, for each component, is given by

τ

η

d〈p1〉
dt

= (φ00 + φ01)(0− p1)

+(φ10 + φ11)(1− p1) (24)
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Fig. 3. A vector plot, as indicated by the arrows, and the
corresponding hodogram are shown for the macroscopic dy-
namics of the linear search problem. It can be observed that
the macroscopic dynamics indicates convergence towards the
global optimum, the corner {0, 0}, since only this corner shows
to be an asymptotically stable solution.

and

τ

η

d〈p2〉
dt

= (φ00 + φ10)(0− p2)

+(φ01 + φ11)(1− p2), (25)

with φ... = φ({...}|p). The set of equations is plotted in
Figure 3. The figure shows a hodogram, which is a plot
of the deterministic function versus the state variable 〈p〉,
together with a vector plot of the corresponding dynamics.
Although time is not explicitly shown in the hodogram,
one knows that 〈p〉 has to increase for positive values of
〈p〉 and to decrease for negative ones. This flow is indi-
cated by the arrows of the vector plot. Additionally one
knows that the stationary solutions of the deterministic
function are given by the roots of d〈p〉/dt = 0. At the ze-
ros (dots) of the deterministic function both, magnitude
and direction vanishes, indicating the fixed points of the
deterministic dynamics. It can be seen that there exist 4
fixed points, but only one attracting one, which can be
identified as the global optimimum, the corner {0, 0}. It is
known that a stochastic process has a high probability to
be found in the neighborhood of an attracting fixed point
of the deterministic equation. Since the remaining fixed
points show to be unstable, we may conclude that the at-
tracting one is unique and that the stochastic process will
converge towards the global optimum.

In a next step let us consider the time evolution of
the macroscopic variable. It is instructive to rewrite equa-
tions (24, 25) in a simpler form, expressing it fully in terms
of the components. This yields

τ

η

d〈p1〉
dt

= (−1 + p1)p1(1− p2 + p2
2) (26)
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Fig. 4. The solution of the equations for the macroscopic dy-
namics (o) for the linear search problem, together with an av-
erage over 5000 searches (-) are shown for the first component
of the probability vector p. The results show to be in good
agreement.

and

τ

η

d〈p2〉
dt

= (−1 + p2)p2(1− p1 + p2
1). (27)

The solution of the set of coupled and nonlinear differen-
tial equations is plotted for the first component in Fig-
ure 4, together with a simulated average over 5000 evolu-
tion processes. The theoretical and the experimental result
show to be in good agreement, although the correspon-
dence is slightly better during the beginning and at the
end of search nearer to the global optimum. This finding
is a result of the appearance of larger fluctuations in some
parts of the search space, causing the macroscopic dy-
namics to break down (we will discuss this in more detail
later).

For the nonlinear search problem (Eq. (3)) the proba-
bilities for receiving an individual for the update are given
by

φ({0, 0}|p) = (1− p1)(1− p2)
×(1 + p1 + p2 − p1p2), (28)

φ({0, 1}|p) = (1− p1)p2

×((1− p1)p2 + 2p1(1− p2)), (29)

φ({1, 0}|p) = (p1(1− p2))2 (30)

and

φ({1, 1}|p) = p1p2(p1p2

+2(1− p1)p2 + 2p1(1− p2)). (31)

The deterministic equation is constructed in the same way
as for the linear search problem and again is plotted in
form of a hodogram and vector plot in Figure 5. Clearly
one can observe the existence of two stable fixed points
of the macroscopic dynamics, namely the corners {0, 0}
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Fig. 5. A vector plot, as indicated by the arrows, and the cor-
responding hodogram are shown for the macroscopic dynamics
of the nonlinear search problem. It can be observed that the
macroscopic dynamics indicates convergence towards both op-
tima, towards the corner {0, 0} (global optimum) and towards
the corner {1, 1} (local optimum). These corners show to be
asymptotically stable solutions, while the other corners and
the fixed point appearing inside the search space show to be
unstable.

and {1, 1}. The remaining corners and the fixed point ap-
pearing inside the plane show to be unstable. This result
indicates that, regarding the macroscopic dynamics, it de-
pends on initial conditions towards which corner search
converges, towards the global or towards the local opti-
mum. However, as we will see while discussing fluctua-
tions, the expansion is only satisfied in the neighborhood
of the two attracting fixed points, thus the macroscopic
dynamics picture only valid locally.

4.3 Fluctuations

As previously mentioned, a full understanding of the dy-
namical properties of the stochastic process cannot be
gained without a proper understanding of the properties
of its fluctuations. Doing so we analyze the matrix A as
given in equation (11). Taking the corresponding deriva-
tives, we arrive for the linear search problem at

A ={
(−1 + 2p1)(1− p2 + p2

2) (−1 + p1)p1(−1 + 2p2)
(−1 + p2)p2(−1 + 2p1) (−1 + 2p2)(1− p1 + p2

1)

}
.

(32)

The real eigenvalues of the matrix are plotted in Figure 6.
It can be seen that even for the linear search problem
there exist areas in the search space where the eigenval-
ues are well above 0, indicating that fluctuations cause
the assumption to break down. In this case however, since
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Fig. 6. The eigenvalues of the matrix A, justifying the small
fluctuations assumption, are shown for the linear search prob-
lem. It can be observed that fluctuations dominate (eigenvalues
above zero) near the corner {1, 1}, causing the expansion to be
slightly inaccurate globally.

there exists a unique stable fixed point of the macroscopic
dynamics, this result means that fluctuations may tem-
porarily increase, but decrease as the process approaches
the fixed point. This situation changes dramatically in the
case of the nonlinear search problem as we will discuss
later.

The time evolution of the fluctuations, in terms of the
covariance, is given by equation (15). The solution for the
linear search problem (Eq. (2)), in terms of the trace of
the matrix F, which represents the variance of the pro-
cess, is plotted in Figure 7, together with the variance
from 5000 simulation runs. Again the results show to be
in good agreement, although, as in the case of the deter-
ministic function, the agreement is better during the start
and as search approaches the optimum. One clearly sees
that starting with zero variance (all search paths started
at {0.5, 0.5}), variance temporarily increases, to become
zero while search approaches the optimum.

For the nonlinear search problem, we follow the same
arguments as for the linear search problem. The matrix A
from equation (11) now becomes

A = {
(−1 + 2p1)(1− 2p2

2) 2(1− p2)p2

4(1− p1)p1p2 −1 + 2p1 + 2p2 − 4p1p2

}
.

(33)

The real eigenvalues are plotted in Figure 8. It becomes
clear that vast fluctuations are dominating a large portion
of the search space, causing the macroscopic dynamics to
break down globally. Furthermore one may conclude that
the dependence of PBIL’s dynamics from initial conditions
is reduced, since fluctuations still allow search to escape a
local attraction area.
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Fig. 7. The solution of the equations for the variance of the
fluctuations (trace of the covariance matrix) (o) for the linear
search problem, together with the variance obtained from 5000
simulated searches (-) are shown for the first component of the
probability vector p. The results show to be in good agreement.
The processes start with zero variance (all searches have been
initialized at {0.5, 0.5}). It increases during search to decrease
to zero variance while search approaches the optimum.
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Fig. 8. The eigenvalues of the matrix A, justifying the small
fluctuations assumption, are shown for the nonlinear search
problem. It can be observed that vast fluctuations (eigenvalues
well above zero) dominate a large portion of the search space,
causing the expansion to break down globally.

4.4 Population size

Let us take a look at the influence of population size.
The parameter N determining population size appears in
the probability in equation (16). Through equations (10)
and (13) it propagates its influence on both, the macro-
scopic dynamics as well as on the fluctuations.

Let us first study the influence of population size on
the macroscopic dynamics (Eq. (13)) for the nonlinear
search problem. Vector plots for population sizes from
N = 2, ..., 4 are shown in Figure 9. It becomes clear that an
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Fig. 9. A vector plot of the macroscopic dynamics is shown for
the nonlinear search problem for population sizes N = 2, ..., 4
(top to bottom). One can observe that with increasing popu-
lation size the unstable fixed point inside the search space is
shifted towards the local optimum, thus increasing the domain
of attraction of the global one.

increasing population size causes the unstable fixed point
inside the search space to move towards the corner of the
local optimum, thus increasing the domain of attraction
of the global one. Although the here analyzed population
sizes are large compared to the dimension of the search
space we can expect this phenomenon to hold also for
higher population to search space size ratios. On the other
hand, as mentioned, population size does influence the size
of fluctuations, too. In Figure 10 the real eigenvalues of
the matrix A of equation (11) for the nonlinear search
problem (Eq. (3)) have been plotted for population sizes
N = 2, ..., 4. One can see that an increase in the popula-
tion size causes the positive eigenvalues to move in outer
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Fig. 10. The eigenvalues of the matrix A of the nonlinear
search problem are shown in form of a contour plot for popu-
lation sizes N = 2, ..., 4 (top to bottom). One can observe that
with increasing population size the influence of fluctuations
decreases, since the border separating positive from negative
values moves further to the corners.

regions of the search space, thus indicating a weaker in-
fluence of fluctuations inside the plane.

5 Summary

It has been demonstrated that already for the most simple
linear search problem, the macroscopic picture of PBIL’s
dynamics may break down, since fluctuations may tem-
porarily grow in time. Nevertheless, since there only one
asymptotically stable fixed point of the macroscopic dy-
namics exists for this case, PBIL will converge towards
this global optimum. Furthermore, it has been shown that
already in this simple case the time dependence of the
macroscopic dynamics has to be described by a set of
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coupled and nonlinear differential equations. This effect is
due to the influence of selection. Fluctuations are shown
to grow temporarily in time, to decrease while search ap-
proaches an optimum.

For a nonlinear search function it has been shown that
vast fluctuations exist in large portions of the search space,
causing the macroscopic picture to be valid locally only. As
a consequence, fluctuations allow search to escape the do-
main of attraction of local optima (as given by the macro-
scopic dynamics), thus reducing the influence on initial
conditions.

Finally, it has been shown how population size deter-
mines the dynamics of search. Increasing population size
is shown to alter the macroscopic dynamics of search by
increasing the field of attraction of the global optimal so-
lution and to reduce the influence of fluctuations.

Although the analysis has been performed for small
search space sizes, it has allowed for an intuitive un-
derstanding of the search process and revealed several
interesting properties. In the context of real world opti-
mization tasks we may confirm that this version of PBIL
remains a local search algorithm from the point of view of
the macroscopic dynamics. However, since there exist vast
fluctuations during middle stages of search, the algorithm
shows capable of exploiting a large portion of the search
space. When approaching an optimum these fluctuations
iteratively decrease. In conclusion, one can expect PBIL
to work well when good solutions of the search problem
tend to be loosely spread over neighboring corners. In this
situation PBIL will be able to approach promising areas
of the binary hypercube quickly from inside, while still
being capable of exploiting alternative solutions. Finally,

from the picture developed here, one should prefer a set-
ting of parameters with moderate learning rates and large
population sizes, since this is shown to allow a good ex-
ploitation of the search space while at the same time in-
creasing the domain of attraction of the global optimum.
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